Rangkuman, Contoh Soal Eksponen & Logaritma dan Pembahasannya

Rangkuman Materi Eksponen & Logaritma Kelas X

Eksponen

Logaritma


Contoh Soal Eksponen Kelas 10 dan Logaritma Berikut Pembahasan dan Jawaban

Soal No.11 (UM UGM 2008)
Contoh Soal Eksponen & Logaritma

  1. Contoh Soal Eksponen & Logaritma
  2. x
  3. 1
  4. Contoh Soal Eksponen & Logaritma
  5. Contoh Soal Eksponen & Logaritma

PEMBAHASAN :
Contoh Soal Eksponen & Logaritma
Jawaban : C

Soal No.12 (UM UGM 2009)
Contoh Soal Eksponen & Logaritma

  1. 3/5
  2. 5/3
  3. 1+ ablog ab²
  4. 1 + ablog a²b
  5. Contoh Soal Eksponen & Logaritma

PEMBAHASAN :
Contoh Soal Eksponen & Logaritma
Jawaban : E

Soal No.13 (SNMPTN 2008 DASAR)
Dalam bentuk pangkat rasional Contoh Soal Eksponen & Logaritma

  1. Contoh Soal Eksponen & Logaritma
  2. Contoh Soal Eksponen & Logaritma
  3. Contoh Soal Eksponen & Logaritma
  4. Contoh Soal Eksponen & Logaritma
  5. Contoh Soal Eksponen & Logaritma

PEMBAHASAN :
Contoh Soal Eksponen & Logaritma
Jawaban : C

Soal No.14 (UN 2009)
Akar-akar persamaan 9x -12.3x + 27 = 0 adalah α dan β. Nilai αβ = …..

  1. -3
  2. -2
  3. 1
  4. 2
  5. 3

PEMBAHASAN :
9x − 12.3x + 27 = 0
(3x)2 − 12.3x + 27 = 0
Jika dimisalkan 3x = a, maka:
a2 − 12a + 27 = 0
(a-9)(a-3) = 0
a − 9 = 0
a = 9
3x = a = 9
3x = 32
x = 2 =α
dan
a − 3 = 0
a = 3
3x = a = 3
3x = 31
x = 1 = β
Maka:
αβ = 2.1 = 2
Jawaban : D

Soal No.15 (UN 2009)
Diketahui Contoh Soal Eksponen & Logaritma. Nilai x yang memenuhi persamaan itu adalah…..

  1. Contoh Soal Eksponen & Logaritma
  2. Contoh Soal Eksponen & Logaritma
  3. 4
  4. Contoh Soal Eksponen & Logaritma
  5. Contoh Soal Eksponen & Logaritma

PEMBAHASAN :
Contoh Soal Eksponen & Logaritma
Contoh Soal Eksponen & Logaritma
Contoh Soal Eksponen & Logaritma

Contoh Soal Eksponen & Logaritma
Contoh Soal Eksponen & Logaritma
4x – 16 = 6
4x = 22

Jawaban : D

Soal No.16 (UN 2008)
Himpunan penyelesaian dari pertidaksamaan eksponen Contoh Soal Eksponen & Logaritma adalah….

  1. Himpunan penyelesaian dari pertidaksamaan eksponen
  2. Himpunan penyelesaian dari pertidaksamaan eksponen
  3. Himpunan penyelesaian dari pertidaksamaan eksponen
  4. Himpunan penyelesaian dari pertidaksamaan eksponen

PEMBAHASAN :
Contoh Soal Eksponen & Logaritma
(32)2x-4 ≥ (3-3)x2-4
4x – 8 ≥ -3x2 + 12
3x2 + 4x – 20 ≥ 0
(3x + 10)(x − 2) ≥ 0
Himpunan penyelesaian dari pertidaksamaan eksponen dan x = 2
Himpunan penyelesaian dari pertidaksamaan eksponen

HP = Himpunan penyelesaian dari pertidaksamaan eksponen

Jawaban : C

Soal No.17 (UN 2014)
Penyelesaian dari 32x+3 – 84.3x + 9 ≥ 0 adalah….

  1. -1 ≤ x ≤ 2
  2. -2 ≤ x ≤ 1
  3. x ≤ -2 atau x ≥ -1
  4. x ≤ -2 atau x ≥ 1
  5. x ≤ 1 atau x ≥ 2

PEMBAHASAN :
32x+3 – 84.3x + 9 ≥ 0
(3x)2.33 – 84. 3x + 9 ≥ 0
Jika dimisalkan 3x = a
27a2 + 84a + 9 ≥ 0
9a2 − 28a + 3 ≥ 0
(9a − 1)(a − 3) ≥ 0
a = 1/9 dan a = 3

Jika a = 1/9
3x = a = 1/9
3x = (1/3)2
x = -2

Jika a = 3
3x = a = 3
3x = 31
x = 1
Himpunan penyelesaian dari pertidaksamaan eksponen
HP = x ≤ -2 atau x ≥ 1
Jawaban : D

Soal No.18 (UN 2014)
Himpunan penyelesaian dari 32x − 6.3x < 27 adalah….

  1. {x | x < -3, x ∈ R}
  2. {x | x < -2, x ∈ R}
  3. {x | x < 2, x ∈ R}
  4. {x | x > 2, x ∈ R}
  5. {x | x > 3, x ∈ R}

PEMBAHASAN :
32x − 6.3x < 27
32x − 6.3x − 27 < 0
Jika dimisalkan 3x = a
a2 – 6a – 27 < 0
(a − 9)(a + 3) < 0
a = 9 dan a = -3

Jika a = 9
3x = a = 9
3x = (3)2
x = 2

Jika a = -3
3x = a = -3
3x = -3
x = tidak memenuhi

Maka pilihannya tinggal x < 2 atau x > 2
Jika disubstitusikan nilai = 1 (x <2)ke pertidaksamaan 32x − 6.3x < 27
32.1 − 6.31 < 27
9 – 18 < 27
-9 < 27 (memenuhi)
Himpunan penyelesaian dari pertidaksamaan eksponen
HP = x < 2
Jawaban : C

Soal No.19 (UN 2014)
Penyelesaian pertidaksamaan 3log x . 1-2xlog 9 > 2 − 1-2xlog 9 adalah….

  1. 0 < x < Himpunan penyelesaian dari pertidaksamaan eksponen
  2. 0 < x < Himpunan penyelesaian dari pertidaksamaan eksponen
  3. 0 < x < Himpunan penyelesaian dari pertidaksamaan eksponen
  4. Himpunan penyelesaian dari pertidaksamaan eksponen < x < Himpunan penyelesaian dari pertidaksamaan eksponen
  5. Himpunan penyelesaian dari pertidaksamaan eksponen < x < Himpunan penyelesaian dari pertidaksamaan eksponen

PEMBAHASAN :
Syarat terpenuhi:

  • x > 0
  • 1 – 2x > 0, maka x < ½
  • 3log x . 1-2xlog 9 > 2 − 1-2xlog 9
    1-2xlog 32 . 3log x > 1-2xlog (1-2x)21-2xlog 9
    Himpunan penyelesaian dari pertidaksamaan eksponen
    Himpunan penyelesaian dari pertidaksamaan eksponen
    Himpunan penyelesaian dari pertidaksamaan eksponen
    Himpunan penyelesaian dari pertidaksamaan eksponen
    5x2 + 4x − 1 > 0
    (5x − 1)(x + 1) > 0
    5x -1 = 0
    x = Himpunan penyelesaian dari pertidaksamaan eksponen
    atau
    x + 1 = 0
    x = -1
    Maka garis bilangannya
    Himpunan penyelesaian dari pertidaksamaan eksponen
    karena x > o dan x < ½ maka:
    Himpunan penyelesaian dari pertidaksamaan eksponen
    Sehingga penyelesaiannya
    Himpunan penyelesaian dari pertidaksamaan eksponen < x < Himpunan penyelesaian dari pertidaksamaan eksponen

Jawaban : D

Soal No.20 (UN 2013)
Penyelesaian dari pertidaksamaan 25log (x-3) + 25log (x + 1) ≤ ½ adalah….

  1. -2 < x < 4
  2. -3 < x < 4
  3. x < -1 atau x > 3
  4. 3 < x ≤ 4
  5. 1 < x < 2 atau 3 < x < 4

PEMBAHASAN :
Syarat terpenuhi:

  • x − 3 > 0, maka x > 3
  • x + 1 > 0, maka x > -1
  • 25log (x − 3) + 25log (x + 1) ≤ ½
    25log ((x − 3)(x + 1)) ≤ 25log 25½
    x2 − 2x − 3 ≤ 5
    x2 − 2x − 8 ≤ 0
    (x − 4)(x + 2) ≤ 0
    x − 4 = 0
    x = 4
    atau
    x + 2 = 0
    x = -2
    Maka garis bilangannya
    Himpunan penyelesaian dari pertidaksamaan eksponen
    karena x > 3 dan x > -1 maka:
    Himpunan penyelesaian dari pertidaksamaan eksponen
    Sehingga penyelesaiannya
    3 < x ≤ 4

Jawaban : D

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You cannot copy content of this page