Contoh Soal & Pembahasan Persamaan Garis Lurus Kelas 8 SMP
- 5
- 6
- 7
- 8
PEMBAHASAN :
Diketahui persamaan garis 3y – x + 4 = 0 dengan y = 3
Substitusikan nilai y ke persamaan
3. 3 – x + 4 = 0
9 – x + 4 = 0
-x = 4 – 9 = -5 ….dikalikan -1
x = 5
Jawaban A
- -1
- -½
- 1
- 2
PEMBAHASAN :
Persamaan 2y + x = 6 diubah bentuknya menjadi y = mx + c
Menjadi
2y = -x + 6…..dibagi 2
y = -½x + 3
maka gradiennya adalah -½
Jawaban B
- (-2, 0)
- (-1, 0)
- (1, 0)
- (2, 0)
PEMBAHASAN :
Agar memiliki titik potong terhadap sumbu x maka syaratnya y = 0
5y + 6x – 12 = 0
5.0 + 6x – 12 = 0
6x – 12 = 0
6x = 12
x = 2
Maka koordinat titik potong terhadap sumbu x adalah (2, 0)
Jawaban D
Gradien persamaan garis yang melalui titik (3,6) dan (6, 9) adalah….
- ½
- 1
- 3
- 5
PEMBAHASAN :
Menentukan gradien garis yang melalui titik (x1, y1) dan (x2, y2) adalah:
Jawaban B
- -2
- -1
- -½
- 1
PEMBAHASAN :
Garis a dan b sejajar, maka:
gradien garis a = gradien garis b
Menentukan gradien garis a
4y + 2x – 7 = 0
diubah ke bentuk y = mx + c
4y = -2x + 7
y = -½x +
maka gradien garis a = gradien garis b = -½
Jawaban C
- 2y + 3x +8 = 0
- y – 3x + 2 = 0
- y + 3x -2 = 0
- 2y – 3x – 8 = 0
PEMBAHASAN :
Menentukan persamaan garis yang memiliki m = 3 melewati titik (2, 4)
y – y1 = m(x – x1)
y – 4 = 3(x – 2)
y – 4 = 3x – 6
y – 4 – 3x + 6 = 0
y – 3x + 2 = 0
Jawaban B
- 3y + 4x – 4 = 0
- 2y + 4x – 4 = 0
- 2y – 4x + 4 = 0
- 3y – 4x – 4 = 0
PEMBAHASAN :
Menentukan persamaan garis lurus dari dua titik yang diketahui menggunakan rumus:
3(y – 4) = 4(x – 2)
3y – 12 = 4x – 8
3y – 4x – 12 + 8 = 0
3y – 4x – 4 = 0
Jawaban D
PEMBAHASAN :
Menentukan titik potong dapat dicari dengan menentukan nilai x dan y melalui penyelesaian sistem persamaan linear dua variabel
Menentukan y dengan mengeliminasi x
Menentukan x dengan mensubstitusikan nilai y ke salah satu persamaan
3x + 2y = 5
3x + 2(-6) = 5
3x – 12 = 5
3x = 5 + 12 = 17
x =
Maka koordinat titik potongnya adalah
Jawaban C
PEMBAHASAN
Titik (4, a) dilalui garis 4x – 6y = 8, substitusikan titik tersebut ke persamaan garis
4.4 – 6.a = 8
16 – 6a = 8
-6a = 8 – 16 = 8
a =
Jawaban B
- y + x – 4 = 0
- 2x – y – 2 = 0
- x + 2y – 5 = 0
- x – y – 2 = 0
PEMBAHASAN :
Dari gambar diketahui persamaan garis melalui dua titik yaitu (4, 0) dan (3, 1). Maka persamaan garisnya dapat ditentukan dengan rumus:
y = -(x -4)
y = -x + 4
y + x – 4 = 0
Jawaban A
- 1
- 2
- 3
- 4
PEMBAHASAN :
Persamaan garisnya y = 2x – 7
Absis = titik pada sumbu x = 5
Ordinat = titik pada sumbu y
Maka untuk mencari nilai ordinat, substitusikan nilai x pada persamaan garis sebagai berikut:
y = 2x -7
y = 2(5) – 7
y = 3
Jawaban C
PEMBAHASAN :
Gradien adalah nilai yang dihasilkan dari perbandingan ordinat dan absis yang menyatakan kemiringan suatu garis. Pada persamaan garis y = mx, gradien sama dengan koefisien variable x. sehingga gradien pada persamaan 5y = 3x sebagai berikut:
5y = 3x
Jawaban C
PEMBAHASAN :
Persamaan garis ubah ke bentuk y = mx + c, sehingga diperoleh:
3y – 2x + 18 = 0
3y = 2x – 18
Jawaban A
- (1,12)
- (3,6)
- (4,2)
- (2,9)
PEMBAHASAN :
Untuk menyelesaikan soal di atas adalah dengan menguji pilihan satu persatu, sebagai berikut:
- Koordinat (1,12)
x = 1
y = 15 – 3x
y = 15 – 3(1)
y = 12
(1,12) (dilalui) - Koordinat (3,6)
x = 3
y = 15 – 3x
y = 15 – 3(3)
y = 6
(3,6) (dilalui) - Koordinat (4,2)
x = 4
y = 15 – 3x
y = 15 – 3(4)
y = 3
(4,3) (tidak dilalui) - Koordinat (2,9)
x = 2
y = 15 – 3x
y = 15 – 3(2)
y = 9
(2,9) (dilalui)
Jawaban C
- 6x – 2y + 4 = 0
- 4x – 3y + 6 = 0
- 8y + 6x – 12 = 0
- 3y + 4x – 6 = 0
PEMBAHASAN :
Untuk mengetahui persamaan garis dengan gradien (m) = 4/3 adalah dengan mengubah persamaan menjadi y = mx + c dan mengujinya satu persatu sebagai berikut:
- 6x – 2y + 4 = 0
6x + 4 = 2y
y = 3x + 2
m = 3 - 4x – 3y + 6 = 0
4x + 6 = 3y
- 8y + 6x – 12 = 0
8y = – 6x + 12
4y = – 3x + 6
- 3y + 4x – 6 = 0
3y = – 4x + 6
Maka jawaban yang tepat adalah jawaban pilihan B
Jawaban B
- (-1,-4) dan (1,4)
- (1,3) dan (3,1)
- (2,3) dan (2,-5)
- (1,5) dan (3,5)
PEMBAHASAN :
Apabila terdapat garis yang sejajar dengan sumbu x, maka gradiennya adalah nol (m = 0), maka berlaku rumus sebagai berikut:
- (-1,-4) dan (1,4)
- (1,3) dan (3,1)
- (2,3) dan (2,-5)
- (1,5) dan (3,5)
Maka jawaban yang tepat adalah jawaban pilihan D
Jawaban D
- ½
- 2
- -1
- 1
PEMBAHASAN :
Hasil kali gradien dari dua garis yang saling tegak lurus = -1
Maka gradien garis B dapat dihitung sebagai berikut:
mA x mB = -1
-2 x mB = -1
Jawaban A
- -1
- 0
- Tidak memiliki gradien
- 1
PEMBAHASAN :
Apabila suatu garis sejajar dengan sumbu y maka garis tersebut tidak memiliki gradien. Garis y = 5 sejajar sumbu y.
Jawaban C
- 1
- -3
- 0
- -6
PEMBAHASAN :
Gradien yang melalui dua titik, titik (2,1) dan titik (3,-5) maka rumus gradien yang berlaku sebagai berikut:
Jawaban D
- 2y – 3x + 6 = 0
- 2y – x – 4 = 0
- 2y + x – 10 = 0
- y – 6x – 5 = 0
PEMBAHASAN :
Menentukan gradien garis B:
3y + 6x – 12 = 0
⇔ 3y = – 6x + 12
⇔ y = – 2x + 4
Maka gradien garis B = – 2
Hasil kali gradien dari dua garis yang saling tegak lurus = -1
Maka gradien garis A dapat dihitung sebagai berikut:
mA x mB = -1
mA x -2 = – 1
mA = ½
Untuk persamaan garis A yang melewati titik (2,3) berlaku rumus sebagai berikut:
y – y1 = m (x – x1 )
y – (3) = ½ (x – 2)
y – 3 = ½ x – 1
y = ½ x + 2
dikalikan 2, menjadi:
2y – x – 4 = 0
Jawaban B
- y = 4x – 13
- y = 2x + 5
- y = 6x – 5
- y = 3x – 2
PEMBAHASAN :
Dua garis yang sejajar memiliki gradien yang sama:
Persamaan garis :
y = 4x + 9
m = 4
Untuk persamaan garis yang melewati titik (2,-5)dengan m = 4 berlaku rumus sebagai berikut:
y – y1 = m (x – x1 )
y – (- 5) = 4 (x – 2)
y + 5 = 4x – 8
y = 4x – 13
Jawaban A
- y = 2x + 5
- y = – 5x +3
- y = -3x + 5
- y = x + 13
PEMBAHASAN :
Persamaan garis lurus melalui dua titik yaitu (1,2) dan (3, -4). Apabila diketahui dua titik koordinatnya. Rumus yang berlaku adalah sebagai berikut:
Jawaban C
- – 1/3
- 1/2
- -1
- 2/3
PEMBAHASAN :
Hasil kali gradien dari dua garis yang saling tegak lurus = -1
2y = 6x + 10
Dibagi 2
y = 3x + 5
m1 = 3
Maka gradien garis yang saling tegak lurus tersebut dapat dihitung sebagai berikut:
m1 x m2 = -1
3 x m2 = -1
m2= – 1/3
Jawaban A
- y = 2x
- y = x + 3
- y = 2x – 5
- y = – 3x – 2
PEMBAHASAN :
Persamaan garis lurus melalui dua titik yaitu (2,5) dan (-2, 1). Apabila diketahui dua titik koordinatnya. Rumus yang berlaku adalah sebagai berikut:
Jawaban B
- 1/3
- – 1/2
- 1/6
- -1
PEMBAHASAN :
Gradien yang melalui dua titik (-4,3) dan (2,4) maka rumus gradien yang berlaku sebagai berikut:
Jawaban C
-x pindah ruas menjadi x
jadi seharusnya x=13
No soal berapa?
Keren